
The Real-World Navigator

AIAA-94-1204-CP

N94-30555

Marko Balabanovid * Craig Becker t Sarah K. Morse *

Department of Computer Science

Stanford University

Stanford, CA 94305

lightning©cs.stanford.edu

Illah R. Nourbakhsh *

9 /0

Abstract

The success of every mobile robot application hinges on the ability to navigate robustly in the real world.

The problem of robust navigation is separable from the challenges faced by any particular robot application.

We offer the Real-World Navigator as a solution architecture that includes a path planner, a map-based

localizer, and a motion control loop that combines reactive avoidance modules with deliberate goal-based
motion. Our architecture achieves a high degree of reliability by maintaining and reasoning about'an

explicit description of positional uncertainty. We provide two implementations of real-world robot systems

that incorporate the Real-World Navigator. The Vagabond Project culminated in a robot that successfully

navigated a portion of the Stanford University campus. The SCIMMER project developed successful entries.
for the AAAI 1993 Robotics Competition, placing first in one of the two contests entered.

1 Introduction

Current research on autonomous mobile robots has

highlighted the difficulty of building robust, general-

purpose navigation software. Problems with current

systems include specificity for a particular environ-

ment, inability to deal with dynamic, real-world situ-

ations, and short life-spans, often due to the problems

of cumulative sensory and control error.

We are studying the problem of robust navigation

in the context of problems which can be decomposed

as shown in Figure 1. In this decomposition, there is

a task level, which provides the navigator level with

a series of goals, and there is a physical robot capable

of sensing and moving in the world. The navigator

level directs the physical robot to achieve the goals of

the task level while guaranteeing robust and reliable

operation.

In this paper we describe a navigator level archi-

tecture called the Real-World Navigator that achieves

"Funding provided by ARPA order 8607, grant NASA

NAG 2-581
tSupported by an NSF Graduate Fellowship, research

funded by ARPA grant N00014-92-J-1809

tFunding provided by the Office of Naval Research under
contract number N00014-90-J-1533

Copyright @1993 by the American Institute o] Aeronau-
tics and Astronautics, Inc. All rights reserved.

I Task Level k.,

l Navigator Level /

T--primitives data

Robot Level

Map

Figure 1: A three level decomposition of a mobile

robot system

robust robot control in a variety of environments.

Given no domain-specific knowledge beyond a floor

map, this Navigator should be able to move about

an arbitrary office environment while preserving its

sense of position.

The sharp decomposition of Figure 1 allows us to

use the Real-World Navigator with different physical

robots and in different task domains. We will de-

scribe two successful implementations, involving dif-

ferent robots in several task domains and both indoor

223



and outdoor environments.

1.1 Assumptions

In the descriptions of the architecture in the remain-

der of this paper, we make the following assumptions:

.

.

The system as a whole can be represented ac-

cording to the interaction paradigm illustrated
by Figure 1.

The goal coordinates that are passed down from

the task level refer to locations in a shared map
with bounded error.

. The Navigator must have bounds on the error of

the sensory and motion primitives through which
it controls the robot level.

.

.

The control and sensory latencies of the robot

level are appropriate to the dynamics of the en-

vironment; it is physically capable of responding
to events and maintaining its safety in real time.

Any objects that are invisible to the robot's sen-

sors must be present on the map. For instance,

our robots have no way of detecting potentially

deadly stairwells, so to ensure their (and our!)
safety these areas must be marked on the map.

We make no further assumptions concerning the
task or robot levels. For instance, it is possible for

the task level to be a human operator.

1.2 Goals

The navigator level is an interface between the high-
level goals of the robot system and the uncertainties

and errors of the real world. As such, it must achieve

the high-level position requests whenever they are

reachable and, in the case of unreachable goals, it
must signal failure. In addition, we expect the Nav-

igator to react gracefully to a dynamic environment

by avoiding both mapped obstacles and unmapped,
visible obstacles in a smooth and efficient manner.

1.3 Overview

In the next section we present the general architec-

ture of the Real-World Navigator without commit-

ment to any specific task or physical robot. We then
describe two implementations of the architecture with

which we have solved various navigation tasks on dif-
ferent robot platforms. Next we discuss the limita-

tions of the current architecture as well as extensions

Navigator Level

motion sensor
primitives data

'success' (x,y)
'impossible' goals
'lost'

Control ]_ lPl::tnherl _"

_ kocalizer I

Map

Figure 2: The Navigator consists of three subsystems:
a path planner, a control loop, and a localizer. It also

references an external map resource.

that may increase its robustness and applicability. Fi-

nally, we summarize work related to ours and present
our conclusions.

2 The Real-World Navigator
Architecture

We consider the navigator level to be a collection of

subsystems which communicate in a well-defined way.

Figure 2 depicts the interaction of the subsystems

that comprise the Navigator. Arrows in the figure
represent data flow between the subsystems as well
as between subsystems and the task and robot levels.

Briefly, the execution of a navigation task is as fol-

lows: the path planner receives goal coordinates from

the task level. It then generates an appropriate plan
using information from the map and invokes the con-

trol loop to execute each segment of the plan in turn.

The control loop interacts with the physical robot

and, if necessary, the localizer in order to reliably
navigate each path segment. The localizer refers to

both the raw sensor data of the robot and the geo-
metric map.

We now discuss each of these subsystems in more
detail.

224



2.1 Map

The map is a shared resource that is externally speci-
fied but referenced and manipulated by both the task

and navigator levels. It maintains two different rep-
resentations of the environment: one geometric, and

the other based on the concept of highways.

The geometric representation is simply any descrip-
tion of the obstacles and free-space using an appro-

priate and agreed-upon coordinate system. For ex-
ample, a reasonable geometric map for a robot that
moves in a plane would be a polygonal representation

of the projection of obstacles onto that plane. Note
that this should be a map of physical space rather

than configuration space because the localizer will

compare the geometric map to sensor data.
In addition, the Navigator makes use of a highway-

based representation of the map. The idea behind

highways is to constrain the possible motions of the

robot, both to simplify planning and to reduce the
number of features that the robot must reliably sense.

Definition 1 (Highway Constraint) Highways

are possibly overlapping regions which decompose a

subset of the free space of the robot's environment.
The robot must always move within highways, and

therefore can move between highways only through re-

gions where they overlap.

This constraint is related to highways in the real

world. For example, planning a trip from San Fran-

cisco to Los Angeles would be much harder if we con-

sidered every possible back road instead of staying on

the interstates. Using the interstates also means that

we need only recognize off-ramps to move from one

highway to another, rather than all the myriad types
of intersection we might otherwise encounter.

Note that the highway map can either be provided

by a human or automatically generated from the ge-
ometric map. Both methods have advantages. A hu-

man might want to design the highways to limit the
robot's motion to certain parts of the free space (for

example, to avoid a particularly busy hallway) or to

hand-optimize certain motions. On the other hand,

automatic generation of highways could save tedious
work. There are several classical algorithms from mo-

tion planning that may be useful in automatic high-

way generation; examples are cell decomposition and

visibility graph construction [Latombe, 1991].

2.2 Path Planner

Given the map and a goal position from the task plan-

ner, the function of the path planner is to compute
a list of interim points through which the robot can

move to achieve the goal. These interim points are

passed in turn to the control loop, which guides the
robot to each sub-goal. We assume that the path

planner uses its knowledge of the geometric map to
ensure that the points on this list can safely be con-

nected by straight-line paths. Of course this assump-
tion may be false in the face of unknown obstacles,

but handling that contingency is the responsibility

of the control loop which we describe below. We
also assume that the path planner respects the con-

straints that the highway map imposes. Specifically,
each of the interim straight-line sub-paths must lie

completely within a highway.
Note that the choice of highway representations

will influence the complexity of the path planner. For

instance, suppose that we define highways as convex

polygons that contain no known obstacles. Then a

straight-line path connects any two points within a

single highway region and planning reduces to find-

ing a chain of overlapping highways that includes
both the initial position and the goal position. On

the other hand, if highways are arbitrary polygons

and contain mapped obstacles, then planning a path

within each highway becomes much more complex.

2.3 Control Loop

Given goal coordinates from the path planner, the
control loop must direct the robot to that position.

It is important that the control loop be reliable as

well as complete. If it is not reliable, the robot will

get "lost"; if it is not complete, the robot may fail to
reach the goal point even if a path exists. Obviously,
the control loop needs to interact with the physical

robot, both to command changes in velocity and to
receive sensor data. Furthermore, to achieve reliable

motion, the control loop must model control uncer-

tainty. Therefore, before we discuss the control loop
itself we must define the control loop's representation

of this uncertainty.

Definition 2 (Positional Uncertainty) The po-

sitional uncertainty region Ht is defined as the region

in which the robot is known to lie at time t.

Note that there is nothing probabilistic about the

uncertainty region--we know that the robot must lie

within it. Also, note that the size of the region//

will depend upon how well the robot can determine

its current position. We assume that a robot has

two general methods of position determination: by

integrating its commanded velocity over time and by
localizing based on sensory input and the geometric

map. This means that the positional uncertainty is

225



while (_Termination) {

AcquireSensorData;

if (DecideToLocalize)

Localize;

Compu_eVelocity;

CommandVelocity;

UpdateUncertainty;

Figure 3: The general structure of the control loop

the result of two other types of uncertainty: control

uncertainty (in the integration case) and sensory un-
certainty (in the localization case).

Now that we have defined the uncertainty region,

we can return to the discussion of the control loop.
Figure 3 shows the high-level structure of the loop.

We describe each component of the loop below.

Termination There are three possible ways for the
loop to terminate:

. The robot has achieved its goal. In the face of

uncertainty, this means that // lies completely
within the goal region (which encapsulates the

goal point and allowable error).

, The robot has become lost. This occurs when, in

spite of efforts to localize based on sensory input,
/4 remains so large that the robot cannot achieve
the goal.

. The robot has realized that there is no path
to the goal. The control loop is constrained to

travel only inside the current highway; therefore,
this condition indicates that the robot has real-

ized that an impassable obstacle is blocking the
path to the goal.

AcquireSensorData In addition to acquiring sen-
sor data from the robot level, it may be useful to fuse

actual sensor data with "simulated" sensor data ob-

tained by examining invisible, mapped obstacles in
the geometric map.

Additionally, certain sensing processes such as

vision may require too much processor time if

done as part of a single-threaded control loop.

Such sensor processes run asynchronously and

AcquireSensorData would poll them as required.

DecideToLocalize This is the step in which the
control loop must reason explicitly about the uncer-

tainty region U. This decision function tells the con-

troller when it must re-localize and reduce the size of

U in order to preserve goal teachability.

For example, if localizing is time-intensive, it would
be appropriate to delay localization until the uncer-

tainty region exceeds some threshold size. On the

other hand, if localization is inexpensive, it would be

beneficial to localize at regular intervals.

ComputeVelocity This step defines the system's

control strategy, and could be implemented in many
different ways. Its function is to combine obstacle

avoidance with goal-directed behavior in order to cal-

culate new velocities for the robot level motors. We

require two guarantees: first, that the robot reach the

goal when possible; and second, that it avoid contact

with all sensed and mapped obstacles.

UpdateUncertainty As the robot moves, this rou-

tine extends//in accordance with the bounds placed

on control uncertainty. This step is vital because

it ensures the continuing validity of the uncertainty

region, which must by definition always contain the
robot's actual position.

2.4 Localizer

The success of the control loop depends on keeping

the size of the positional uncertainty region//suffi-

ciently small. Without the use of sensors, the size
of U will, in general, only increase, since there is un-

certainty in control. The role of the localizer is to

use sensor data to compute a new region//t' from the
current region Ut and some set of sensor values. The

hope is that Ut ' will be smaller than Ut, thus reducing
the robot's positional uncertainty.

Note that the localizer may have internal state. In

particular, this means that it may use a history of

sensor values instead of a single instantaneous read-
ing. The use of history can increase the effectiveness

of the localizer by significantly decreasing the likeli-
hood of a false localization.

3 The Vagabond Project

The Vagabond Project [Dugan and Nourbakhsh,

1993] was an effort to build a reliable outdoor naviga-

tor for the Stanford University Quadrangle. This out-

door arcade houses many of Stanford's departments

and is composed of several walks that are flanked by
regular pillars and sandstone walls.

226



Vagabondis a Nomad100mobilerobot from
NomadicTechnologies,Inc. It consistsof a non-
holonomicbasewhichsupportssixteeninfraredsen-
sorsandsixteensonarsensors.Its "brain"isanAp-
plePowerbook170that communicateswith thesen-
sorboardsandmotorcontrollerthroughaseriallink.
Theinfraredshaveaneffectiverange of 0 to 15 inches

while the sonars have an effective range of 15 to 150

inches.

3.1 Task Description

The Quad presents Vagabond with several great chal-

lenges. Many of the arcades are lined with six inch

steps that would topple it, and, worse yet, the walks
themselves have scattered potholes that are deep

enough to trap it. In contrast to many forgiving of-
fice environments, the Quad allows Vagabond to ac-

tually destroy itself by mistaking its position. The

dynamic character of this uncontrolled environment
adds to the danger--at times bicyclists and pedes-

trians densely populate the walkways. Finally, direct

sunlight in the Quad washes away infrared light, leav-

ing Vagabond with sonar as its sole sensory input.
Given this very real environment, the task was to

enable Vagabond to navigate successfully while avoid-

ing the unmapped obstacles and the deadly steps.
The final interface is precisely a navigator-level mod-

ule. At the task level, the human provides initial po-

sition and orientation information and then supplies

goal points through a graphical interface.

3.2 Implementation

Vagabond's map is a data structure with a polygonal

description of every obstacle. The map differentiates
visible from invisible obstacles. Overlaying this two-

dimensional picture is a set of highways that are also

represented as polygons. Figure 4 displays a portion

of Vagabond's actual map. The filled polygons are
mapped, visible obstacles while the unfilled polygons

are mapped, invisible obstacles such as potholes. The

shaded polygons depict the highways. Additionally,

each highway has an associated speed limit that is

based upon the general smoothness of its terrain.

Vagabond's path planner is an A* visibility graph

search algorithm that treats both visible and invisi-
ble mapped obstacles as navigation points. The path

planner finds the path with the fastest expected time
of completion, based upon the top speed feature and

the path length. The path planner then stores the

path as a list of points to be achieved and sends the

successive goal points to the control loop, waiting for
success or failure and responding appropriately. In

Figure 4: A section of the map of Stanford University
Main Quadrangle, as used by Vagabond

the case of failure, the path planner recognizes that

the goal point is not reachable from this highway, and
so removes it from the map. It will then re-plan to

find an alternate path to the task-specified goal point.

The control loop represents b/as a rectangular re-

gion for the sake of computational efficiency. The
ComputeVelocity routine employs a simple multi-
level architecture with two behaviors: course main-

tenance and reactive obstacle avoidance. The course

maintenance module resembles an aircraft course au-

topilot. It acts to reestablish the course and heading

that define the line segment of travel between two suc-

cessive subgoal points. The obstacle avoidance mod-
ule modifies these ideal motion settings to avoid both

sonar-detected obstacles and mapped invisible obsta-
cles. Note that the obstacle avoidance module must

ensure that the entire region U remains clear of any

invisible obstacles on the geometric map.

The careful design of the interaction between these
two modules is essential to preserving goal reacha-

bility as well as graceful behavior in the event of
encountering an impassable obstacle. For instance,
the desire to reestablish course should never override

the refusal to allow U to overlap an invisible obsta-

cle. However, intelligent obstacle avoidance demands

more than a purely reactive decision system to avoid

looping behavior.

The final ingredient of Vagabond's navigation sys-
tem is the locMization procedure. Localization is ex-

tremely time-intensive on Vagabond's hardware and
is therefore minimized. The control loop only calls

the localizer when the the size of U exceeds a thresh-

old. The localizer has no state--it uses the current

227



Figure5: Vagabondnavigatingin theStanfordMainQuadrangle

instantaneoussensoryinputratherthana historyof
sensorydata.It employsadeceptivelysimplescoring
strategythat is surprisinglyeffectiveevenin times
of significantsensoryocclusion(bypeople,bicycles,
etc.).Thekeyis thesimpleideathatanyunexpect-
edlylongreal-worldsonarvalueprovidesevidencefor
theeliminationofapossiblemapposition(sonarsdo
notseethroughsandstonewalls)whileanyunexpect-
edlyshortsonarvaluemaybeattributableto anoc-
clusionbyunmappedobstacles.

3.3 Results

One of the most desirable properties in a mobile robot

is the ability to avoid self-destruction. For Vagabond,

this meant always preserving its sense of position well
enough to avoid the deadly steps. The architecture

guarantees that no part of Vagabond's uncertainty
region will intersect any mapped obstacle. Assum-

ing that all steps are mapped (as they were), self-

destruction could only occur after a false-positive lo-
calization. That is, Vagabond's localizer would have

to localize to an incorrect location, thus violating
the architectural assumption that the robot is always
within U.

Our goal was to produce a truly robust navigator.

To this end, the entire development and testing pro-
cess used the real world, never a simulator. We tested

the final Vagabond system intensively in the Quad

environment, both during quiet times (e.g. weekdays

in summer) and in times of extremely dense traffic

(e.g. between classes in the autumn). False localiza-

tion occurred extremely infrequently during testing
and never continued long enough to result in a deadly
move. The only recurring cause of false localization

involved onlookers who formed human walls paral-

lel to and offset from the walls of the Quad. Sonar
cannot differentiate such human walls from real walls.

Happily, group dynamics seem to render human walls
too transient to be a serious threat.

In contrast, Vagabond's most common failure re-

sulted instead from an inability to localize success-

fully. This would eventually lead to an uncertainty
region so large that it rendered any further movement

impossible. In these cases, Vagabond would stop and
return the "lost" termination condition to the task

level. In our tests, this condition occurred in approx-

imately 10% of all cases in which the user requested

Vagabond to achieve a certain position on its map.

Vagabond would reach the destination point and re-

228



turnsuccessin theremaining 90% of the cases.

Vagabond moved at a slow walking pace (12 inches

per second on average), typically covering distances

of ½ mile per task.

4 The SCIMMER Project

The SCIMMER. 1 Project was organized to develop

a successful entry for two contests at the AAAI

Robotics Competition held in Washington, D.C. in

July, 1993. The contests involved simple navigation
tasks in contest arenas that simulated real-world con-

ditions using gray office partitions, white boxes, and

actual office furniture.
SCIMMER is a Nomad 200 robot from Nomadic

Technologies, Inc. (Figure 6). It has a three-wheel

synchronous drive non-holonomic base, on top of
which is an independently rotating turret housing

sensors and on-board computation. The sensors in-

clude 20 pressure-sensitive bumpers, 16 sonar sensors,
16 infrared sensors, a structured light vision system

consisting of a laser and CCD camera, and a sec-
ond CCD camera linked to a frame-grabber for vi-

sion processing. We ran all software on-board using
a 386-based PC system.

4.1 Task Description

Contest I The environment was a large "ware-

house" with an enclosed office at one end. SCIMMER'S

task was to escape from the inner office, then race to
the far wall of the warehouse. The office contained

typical office furniture (e.g. file cabinets and tables)
while the warehouse was cluttered with white boxes.

Contest II The environment was a simulated of-

fice building with rooms and hallways connected in

a fairly typical layout. White boxes were scattered
around as obstacles. The goal of the contest was to

find a coffee pot and deliver it to a specified room. At
the start of the contest, the robot received a map of

the office building (divided into quadrants), its start-

ing quadrant, the quadrant containing the coffee pot,
and the destination room for the coffee pot. Note

that the robot begins the contest with an enormous
amount of uncertainty as to its initial location, so a

major part of this contest was the initial localization.

4.2 Implementation

Contest I required domain-dependent code for escap-

ing the inner office, followed by an implementation of

I Sarah, Craig, Illah and Marko's Most Excellent Robot

Figure 6: The Nomad 200 robot

the control loop subsystem to reach the goal region.

Readers interested in the control loop implementa-
tion are referred to [Balabanovic et al., 1993]. Our

Contest II entry provides a more complete implemen-

tation of the navigator level; this is the implementa-

tion we now describe.

SCIMMER.'s geometric map is a simple line draw-

ing, with each line denoting a wall in the real world.
There were no invisible but mapped obstacles (such

as sharp drop-offs) in the environment. The highway

map consists of both highways and nodes. Highways

are polygons of free space (barring any unmapped ob-

stacles) The nodes are simply just intersections be-

tween highways that provide task-level goal regions
to facilitate movement between highways while sim-

plifying path planning.

SCIMMER'S planner uses a best-first search algo-
rithm to find the shortest path from one node to an-

other. The planner then feeds the control loop one
node at a time. Because of the nature of the task,

the planner does not re-plan if the control loop fails

to achieve its subgoal. Instead, it returns impossible

to the task planner. Consider the problem: we're try-

ing to find a coffee pot in one quadrant of the map.
There could be multiple rooms in that quadrant; if

we find a blockade along the way, we might want to

229



changetheorder in which we visit those rooms. Since

this is a high-level task decision, control must return
to the task level.

The ComputoVelocity routine that combines these
desires frequently commands the robot to move at the

motor controller's top speed of 20 inches per second,
as the contests were timed. Once the robot is within

the goal region, the control loop exits to the planner,

signalling success. In the case of failure, the control

loop exits signalling impossible and the planner re-

moves that highway from the map.

SCIMMER deals with positional uncertainty in a
very simplified way. Upon reaching a goal node, the

control loop decides whether it should localize by re-
ferring to the map, on which all nodes are marked
either "localize" or "don't localize". We entered this

information manually, basing our decisions upon the
degree to which different nodes would be effective

places to localize. For example, nodes in the middle

of a long hallway would be very unreliable whereas

nodes at an intersection of three of four highways
would be promising.

SCIMMER's localization, as opposed to Vagabond's

uses history. As it moves, it builds a bitmap repre-
senting the objects it has detected over time with its

laser range-finder. The localizer uses a general shape
matching algorithm to find the best match of this sen-

sor history against a bitmap representing the known

obstacles in the world. The shape-matching metric

used is the Hausdorff distance, following the general
algorithm presented in [Huttenlocher et aL, 1991].

Once again, we avoided the use of simulation al-

together during the development of the SCIMMER

contest entry. Success demanded fast, robust oper-

ation in the actual contest environment--therefore,

we chose this environment as our development envi-
ronment.

4.3 Results

Contest I SCIMMER achieved first place. It suc-

cessfully avoided all obstacles and quickly followed a

smooth path to the final goal.

Contest II SCIMMER was one of only two contes-
tants to successfully localize itself at the start of the

contest without assistance. It began to follow its plan
to reach the projected location of the coffee pot, but

an unfortunate operating system problem caused the

robot to crash a short distance from that goal.

5 Limitations and Extensions

Clearly, there are domains to which this architecture

simply does not apply. For instance, the problem of

visually recognizing a coffee pot requires a specific
solution that does not fit in our three-level decom-

position. Indeed, any problem that does not require

navigation between well-specified destination points
will not benefit from our architecture.

A more serious limitation involves the explicit un-
certainty region that the navigator level maintains.

Although the control loops we have implemented

based velocity decisions on the size of U, among
other parameters, neither of our systems incorporated

reasoners that would move the robot exclusively to
shrink H. One can imagine a case in which the robot

needs to move from A to B, yet the direct path is
so sparse that the robot must first move from A to

landmark C, where the size of//can be bounded, and

then on to B. Our current implementations would fail

in this situation because neither Vagabond nor SCIM-

MER'S path planners account for the size of//. A pos-

sible solution is to use a path planner that predicts

the localizer's reliability at any given map location.

Another significant limitation of our architecture

is that it fails to provide any mechanism allowing
the robot to improve its performance over time by
learning more specific information about its environ-

ment. The obvious solution to this deficiency is to

allow the robot to modify its geometric map during

navigation, thus attaining an increasingly accurate
representation of its environment over time. In real-

ity, this is an extremely complex issue that currently

has no satisfying solution. Today's robotic sensory
input is too imprecise and robotic Common sense too
undeveloped to allow a robot to make useful decisions

concerning the transience of unexpected obstacles.

Finally, the robustness of any navigation system

depends largely on the richness and reliability of its
sensors. Sensors such as sonar transducers are use-

ful in many situations, but their very nature renders

them unable to detect many hazards (such as down-
ward steps and narrow chair legs) that exist in the

real world. It seems useful, then, to explore other
types of sensors which do not suffer from these limi-
tationsl

One could imagine designing a specific "downward

step sensor" using short-range proximity sensors or

touch sensors trained on the floor. In fact, ground-

level tactile sensors seem to complement sonar well,
detecting many of the low-lying obstacles that other-
wise evade detection.

Perhaps a better solution is an increased reliance

230



onvision. Richer,moreflexiblesensingwouldim-
provetheperformanceof ourNavigatorbyallowing
morepreciselocalizationandwouldallowusto re-
ducecontrolerrorbyreceivingconstantenvironmen-
tal feedbackwhilemoving.Oursystemmakesit easy
to incorporatesuchenhancedsensing,andwebelieve
its developmentis vital to eventuallybuildingtruly
robustsystems.

6 Related Work

Researchers from both the robotics and the artifi-

cial intelligence communities have been addressing

the chMlenges of mobile robotics for some time. How-

ever, their approaches and the focus of their research

have been quite different.
The robotics community has successfully addressed

the challenges of many of the components of a robot
architecture. Most of the subsystems we posit as

part of the Real-World Navigator have been exten-
sively researched. Crowley [1989] develops a local-

izer that uses ultrasonic range data to find a robot's

position on the map. His approach involves an ab-

straction step in which the localizer extracts poten-

tial line segments out of the sonar data. Takeda and
Latombe [1992] address the problem of path plan-

ning under the specific assumption that the executor
will use sensory feedback to localize during path ex-

ecution. Their sensory uncertainty field computation

ascribes to each possible robot position a measure of

the robot's ability to localize using sensory input at

that position. For example, a corner would receive a

much higher score than a featureless wall.

In contrast, the AI community has witnessed a re-

cent spate of work on architectures for robotic agents.

However, these agent architectures often blur the dis-
tinction between the task level and the navigator

level. As a result, most AI robot architectures do

not make the strong claim that is implicit in the ReM-

World Navigator: that the navigation component can
be fixed across application domains. Instead, a com-

mon approach is to allow higher-level components to

activate, deactivate or parameterize navigation pro-
cesses. Recent examples include ATLANTIS [Gat,

1992], SSS [Connell, 1992] and [Saffiotti, 1993]. A
further alternative is to compile beforehand a reac-

tive structure that will execute a plan at run-time

(again, navigation is neither a fixed component nor a
necessary part of these structures). Examples include
[Kaelbling and Rosenschein, 1989], [Schoppers, 1987]

and [Nilsson, 1994].

Another important difference between the Real-

World Navigator and many other current approaches

is our need for a geometric map, enabling explicit
maintenance of a positional uncertainty region. A

popular alternative is to navigate using robust re-
active routines such as wall-following and corridor-

following, and to provide a connectivity map in
terms of these motion primitives as well as high-

level sensory primitives (e.g. T-junctions, door-

ways). This technique, which evolved from the sub-

sumption architecture [Brooks, 1986], has been suc-

cessfully demonstrated by [Gat, 1992] and [Connell,

1992]. The clear advantage of these systems is that

they do not require a geometric map of the environ-
ment. However, the software is usually quite domain-

dependent, and any change of domain requires a great

deal of rewriting. In addition, many extensions (such

as avoiding mapped, invisible obstacles) do not fit

neatly into this framework. Finally, it is difficult to
see how such a system would be able to effectively

determine that it was lost.

Three projects at Stanford are worth noting here.

The Logic Group formalizes the concept of planning

with incomplete information and designs a framework

in which an agent may act explicitly to decrease its
uncertainty [Genesereth and Nourbakhsh, 1993]. An-

other project focuses on landmark-based navigation

where assumptions about sensing and control within

specific landmark regions are used to reduce planning
to a polynomial-time problem [Lazanas and Latombe,

1993]. Finally, the AIbots project [Hayes-Roth et al.,

1993] addresses issues involving the interface to the

task level by investigating the integration of a cogni-

tive level, which is currently a BB1 blackboard sys-

tem dealing with task planning and deadline man-

agement, with a physical level which includes a path

planner and a navigator.

7 Conclusion

We have introduced an architecture for mobile robot

control which addresses the problem of navigation.

In addition to demonstrating robust behavior in dy-

namic, real-world situations, the two applications we
have described show that the architecture is indepen-

dent of the task domain, the environment and the

robot platform.
Our belief is that the success of these applications

is due not only to the design of the individual compo-

nents, but also to the design of the architecture itself.
This allows reuse of the architecture over many differ-

ent tasks, its tested framework considerably decreas-

ing the difficulty of building robust, general-purpose

navigation software.

The Real-World Navigator provides a solid founda-

231



tiononwhichwecan build highly effective real-world
mobile robot applications.

Acknowledgements

Benedict Dugan played a major role as one of the
two developers 0n:the Vagabond Project. Thanks are

also due to Michael Genesereth, Barbara Hayes-Roth,

Jean-Claude Latombe and Nils Nilsson for their help-
ful comments and suggestions. Finally, we would also

like to thank David Zhu, Jim Slater and John Slater

at Nomadic Technologies for all their help in times of
need.

References

[Balabanovic et al., 1993] Marko Balabanovic, Craig

Becker, Erann Gat, Steven Goodridge, David Hin-

kle, Ken Jung, Sarah Morse, Illah Nourbakhsh,
Harsh Patlapalli, Reid Simmons, and David Van

Vactor. The winning robots from the 1993 robot

competition. AI Magazine, Winter (In Print) 1993.

[Brooks, 1986] Rodney A. Brooks. A robust layered

control system for a mobile robot. IEEE Journal

of Robotics and Automation, RA-2(1):14-23, 1986.

[Connell, 1992] Jonathan H. Connell. SSS: A hybrid

architecture applied to robot navigation. In Pro-

ceedings of the IEEE International Conference on

Robotics and Automation, 1992.

[Crowley, 1989] James Crowley. World modeling and

position estimation for a mobile robot using ultra-

sonic ranging. In Proceedings of the IEEE Inter-

national Conference on Robotics and Automation,
1989.

[Dugan and Nourbakhsh, 1993] Benedict Dugan and

Illah Nourbakhsh. Vagabond: A demonstration of

autonomous, robust, outdoor navigation. In Video

Proceedings of the IEEE International Conference
on Robotics and Automation, 1993.

[Gat, 1992] Erann Gat. Integrating planning and re-

acting in a heterogenous asynchronous architecture
for controlling real-world mobile robots. In Pro-

ceedings of the 10 th National Conference on Arti-

ficial Intelligence, 1992.

[Genesereth and Nourbakhsh, 1993] Michael Gene-

sereth and Illah Nourbakhsh. Time-saving tips

for problem solving with incomplete information.
In Proceedings of the 11 th National Conference on

Artificial Intelligence, 1993.

[Hayes-Roth et al., 1993]

Barbara Hayes-Roth, Philippe Lalanda, Philippe

Morignot, Karl Pfleger, and Marko Balabanovic.

Plans and behavior in intelligent agents. Technical

Report KSL-93-43, Stanford University Knowledge
Systems Laboratory, 1993.

[Huttenlocher et all' 1991] Daniel P. Huttenlocher,

Gregory A. Klanderman, and William J. Ruck-

lidge. Comparing images using the Hausdorff dis-

tance. Technical Report CUCS TR 91-1121, Cor-

nell University Department of Computer Science,
1991.

[Kaelbling and Rosenschein, 1989] Leslie Pack Kael-

bling and Stanley J. Rosenschein. Action and

planning in embedded agents. Robotics and Au-

tonomous Systems, 6(1-2), June 1989.

[Latombe, 1991] Jean-Claude Latombe. Robot Mo-

tion Planning. Kluwer Academic Publishers, 1991.

[Lazanas and Latombe, 1993] Anthony Lazanas and
Jean-Claude Latombe. Ladmark-based robot mo-

tion planning. In C. Laugier, editor, Geometric

Reasoning for Perception and Action, pages 69-83.
Springer-Veriag, Berlin, 1993.

[Nilsson, 1994] Nils J. Nilsson. Teleo-reactive pro-

grams for agent control. Journal of Artificial In-

telligence Research, To Appear 1994.

[Saffiotti, 1993] Alessandro Saffiotti. Some notes on

the integration of planning and reactivity in au-

tonomous mobile robots. In AAAI Spring Sympo-
sium on Automated Planning, 1993.

[Schoppers, 1987] M. J. Schoppers. Universal plans

for reactive robots in unpredictable environments.

In Proceedings of the Tenth International Confer-

ence on Artificial Intelligence, pages 1039-1046.
International Joint Committe on Artificial Intel-
ligence, 1987.

[Takeda and Latombe, 1992] H. Takeda and J.C.

Latombe. Sensory uncertainty field for mobile

robot navigation. In Proceedings of the IEEE Inter-

national Conference on Robotics and Automation,
1992.

232


